Please Sign Up for Weekly Newsletter of Beautiful Lands!

Preparatory Division String Camp, June 20-24, Ages 6-9 and 9-12. Registration deadline is May 20th. Preparatory Division, Tanner Dance and Youth Theatre Arts Passport, June 27 - July 1, Create an original performance work to be presented at the Tanner Dance Building. Preparatory Division International Piano Festival, July 26 - July 29, Musicianship, ukulele, and choir classes. University of Utah, School of Music.

Home in Their Eyes: Images and Stories of Home by Residents in Rural China, Friday, March 25 – Thursday, June 2, 2016, J. Willard Marriott Library 3rd Floor

Salt Dance Fest 2016 brings together internationally renowned dance artists and dance makers Jeanine Durning, Alex Ketley and Jennifer Nugent, along with esteemed SLC dance artists Daniel Charon, Molly Heller and Stephen Koester for two weeks of moving, collaborating, dance making and the lively exchange of ideas, June 6-17, 2016.

Summer Chamber Music Workshop, Matt Zalkind, June 26 - 30, 2016, Hasse Borup, Director, Open for serious string and piano players, age 12 - 26,  School of Music, University of Utah

University of Utah Department of Ballet Summer Intensive, June 20 - July 15, 2016. Join us for an exciting four-week ballet intensive with internationally recognized faculty and guest artists.

Performance Calendar of 2015 - 2016 Season, Department of Ballet, University of Utah

Performance Calendar of 2015 - 2016 Season, Department of Modern Dance, University of Utah

Natural History Museum of Utah 2015 Lecture Series

College of Fine Arts, University of Utah

Transplantable Bioengineered Rat Forelimb

A team of Massachusetts General Hospital (MGH) investigators has made the first steps towards development of bioartificial replacement limbs suitable for transplantation. In their report, which has been published online in the journal Biomaterials, the researchers describe using an experimental approach previously used to build bioartificial organs to engineer rat forelimbs with functioning vascular and muscle tissue. They also provided evidence that the same approach could be applied to the limbs of primates

“The composite nature of our limbs makes building a functional biological replacement particularly challenging,” explains Harald Ott, MD, of the MGH Department of Surgery and the Center for Regenerative Medicine, senior author of the paper. “Limbs contain muscles, bone, cartilage, blood vessels, tendons, ligaments and nerves – each of which has to be rebuilt and requires a specific supporting structure called the matrix. We have shown that we can maintain the matrix of all of these tissues in their natural relationships to each other, that we can culture the entire construct over prolonged periods of time, and that we can repopulate the vascular system and musculature.”

For more information about this breakthrough, please visit the website of Massachusetts General Hospital.

Rat Tissue Decellularization:

Posts Archives